AAAAl Foundation and Michael M. Frank, MD FAAAAAI Lectureship

The AAAAl Foundation and Michael M. Frank MD FAAAAAI Lectureship will be presented by Sarita U. Patil, MD FAAAAI in session 2522 National Institute of Environmental Health Sciences (NIEHS): Molecular Characterization of Allergens and Specific IgE Antibodies in Convention Center, North Building, 100 Level, Room 120D on Saturday, February 26 at 1:15 pm

Michael M. Frank, MD FAAAAAI

The AAAAI Foundation is pleased to honor the life and work of Dr. Michael Frank with the creation of the Michael M. Frank, MD FAAAAAI Lectureship. Throughout his long career, Dr. Frank has made an important mark on the Allergy/Immunology specialty, especially in the area of hereditary angioedema and as a beloved mentor to many in our field.

Dr. Frank is the Samuel L. Katz Professor Emeritus of Pediatrics in the School of Medicine at Duke University and an internationally respected physician-scientist. The research of Dr. Frank's laboratory revolves around effector mechanisms of immune damage. Specifically, the laboratory is interested in understanding how antibody and complement contribute to the damage of tissues and micro-organisms. Overlapping areas of interest include the role of mediators in inflammation and the functions of antibody and complement in the production of autoimmune disease.

Dr. Frank was born and raised in Brooklyn, New York. Discovering a very early scientific interest, he knew he wanted to be a medical researcher before the age of ten. Dr. Frank credits reading Microbe Hunters by Paul de Kraif as a young boy as having inspired an early fascination with the immune system.

Entering the University of Wisconsin at age 15, Dr. Frank developed an interest in infectious diseases through microbial biologist, and subsequent Nobel Prize winner, Joshua Lederberg. He then went on to attend Harvard Medical School and was a House Officer in Medicine at Harvard and in Pediatrics at Johns Hopkins Medical School. After completing his training, he joined the NIH in 1966 as clinical director of allergy and infectious disease. His program led the team that found the first effective treatment for hereditary angioedema. Dr. Frank rose to become section chief at NIAID and served as Clinical Director for his last 13 years at the Institute.

After 24 years at the NIH, Dr. Frank was hand-selected by Dr. Samuel Katz to be his successor as Chair of Pediatrics at Duke. While at Duke, Dr. Frank recognized the need for the pediatrics department to have their own building. He helped spearhead the effort towards the creation of a pediatrics hospital and was instrumental in raising funds and even picking architects for its design. Duke Children's Hospital opened in May of 2000 and has gone on to become one of the foremost children's hospitals in the world. Dr. Frank passed away in August of 2019.
Sarita U. Patil, MD FAAAAI

Sarita Patil, MD is an Assistant Professor at Harvard Medical School and Assistant in Medicine at the Massachusetts General Hospital (MGH) in the Division of Rheumatology, Allergy, and Immunology in the Department of Internal Medicine and in the Department of Pediatrics.

Dr. Patil earned a BA in Human Biology with Honors from Stanford University and an MD from Duke University, which included a Howard Hughes Medical Research Fellowship in the laboratory of Dhaval Patel, MD, PhD. She completed her clinical training with an Internal Medicine residency at the University of Pennsylvania followed by her Allergy and Immunology fellowship at Massachusetts General Hospital. She completed her post-doctoral work in the laboratories of Wayne Shreffler, MD, PhD at MGH and J. Chris Love, PhD from Massachusetts Institute of Technology.

Her laboratory at MGH is focused on understanding the role of antigen-specific B cells and antibodies in allergic diseases. In food allergy, her work centers on elucidating protective humoral mechanisms induced by peanut oral immunotherapy. These efforts have resulted in the development of new techniques to study antigen-specific B cells, including the use of fluorescent multimers. Combined with single cell B cell receptor sequencing and deep sequencing of the antibody repertoire, these approaches seek to better understand allergic tolerance, not only leading to the identification of biomarkers but the development of new therapeutic modalities.